v Compare innate and adaptive immune responses to influenza vaccine in pediatric chronic dialysis patients vs healthy children

v Evaluate baseline differences in immune function and metabolism between chronic dialysis patients and healthy children

Chronic kidney disease is a life-threatening condition that affects over 11,000 children in the United States. CKD can lead to end stage
renal disease (ESRD) and dependence on chronic dialysis (CD) therapy in the form of peritoneal dialysis or hemodialysis. Metabolic
disarray resulting from ESRD causes impairments in the innate and adaptive immune system, the mechanisms of which are
incompletely understood. CD patients have higher rates of complications from many infections compared to healthy children, including
influenza. Vaccination remains the best protection against influenza infection, but there is mixed evidence as to whether adult CD
patients mount protective immune responses against influenza and no studies have assessed this question in pediatric populations. We
hypothesized that CD patients exhibit dysregulated immunometabolism at baseline pre-vaccination and impaired innate and
adaptive immune responses to influenza vaccination compared to healthy children (HC).
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Figure 1: Schematic of the timeline of influenza vaccination and peripheral blood collection in CD and HC patients at days O, 2, 7, and 28
post vaccination.

To test this hypothesis, we recruited 7 chronic dialysis patients and 14 healthy children (6 months to 18 years) during the fall and winter of
2023-2024. We immunized patients using the quadrivalent influenza vaccine and collected peripheral blood samples on days 0, 2, 7 and
28, measured from the time of vaccine administration (Figure 1). 2.5ml of peripheral blood was collected on days 0, 2, and 7 into PAXgene
tubes that was used for total RNA isolation, library preparation, and RNA sequencing. An additional 1ml of peripheral blood was collected
on days 0 and 28 for antibody titer measurement using a hemagglutination inhibition assay (HAI). The DESeq2 R package was used to
calculate fold changes in gene expression at at post-vaccination timepoints compared to baseline and to analyze enrichment in previously
described blood transcription modules (BTMs), calculated as normalized enrichment scores.
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Figure 2: Antibody titers were measured at
baseline day 0 and at day 28 post vaccination
S from each of 3 influenza strains matching
vaccine strains. (A) Fold changes in antibody

titers were measured for each subject for
oavse | €ach strain, and the maximum fold change for
each subject was plotted for healthy children
and chronic dialysis patients. (B) The
maximum antibody titer of all strains per
subject at baseline was plotted. p-values
were calculated using the Wilcoxon signed-
rank test.
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Figure 3: (A) Blood transcription modules (BTMs) involved in interferon responses, innate immunity, plasma cells, or cell cycle that are significantly
enriched at days 2 and 7 in healthy children or dialysis patients. (B) and (C) Individual subject average log2FC and overall average log2FC +/- SD
of genes in modules M127 or M156.0, respectively.
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Figure 4: (A) Normalized enrichment scores for positively enriched or negatively enriched BTMs in dialysis patients compared to healthy children,
padj < 0.05. (B) Heatmap of enrichment of common genes among 4 poorly described “to be announced” BTMs containing genes involved in
metabolic regulation and protein turnover, including PANK3, SACM1L, RNF6, BZW1. (C) Network map of genes included in a respiratory electron
transport chain BTM (238) that is negatively enriched in dialysis vs healthy at baseline with log2FC differences coloring nodes.

v Assess functional differences in metabolism between healthy children and dialysis patients by performing an extracellular flux assay
(Seahorse assay) with isolated PMBCs

v' Use experimental data from healthy children to define pediatric influenza blood transcription modules
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performed RNA sequencing
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