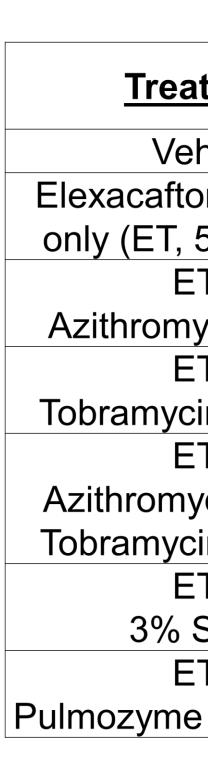
Impact of routine pulmonary medications on rescued CFTR in cystic fibrosis cells

Matthew Wleklinski, MD, PhD; Jessica Meeker, BS, MS; Hunter Morgan, BS; Alicia Ostmann, BS; John Brewington, MD Department of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio

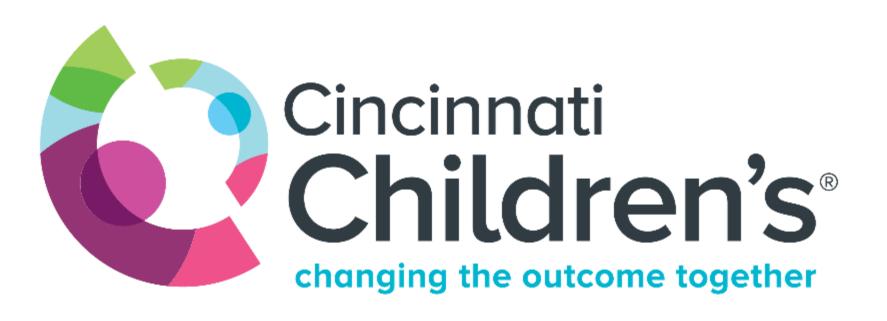
- requiring management of multiple organ systems.
- medication regimens targeting pulmonary
- function of the defective cystic fibrosis transmembrane conductance regulator (CFTR) protein
- The potential for interactions between these could significantly impact treatment efficacy and inform clinicians in optimizing medication regimens for individuals with CF.


- establish an air-liquid interface (ALI).
- vehicle. Azithromycin, tobramycin, pulmozyme, and hypertonic saline were added to the treatment, either alone or in combination.
- CFTR function was measured using the Ussing chamber, a device that can measure transdependent on CFTR activity.

The goal of this project was to test if common pulmonary medications affect modulator-rescued CFTR function in CF airway epithelia.

Reprocell: Ussing Chamber. B. CFBE cells were treated with Vehicle (Line 2, green), ET only (Lines 3-5, blue, red, and pink), or ET and Pulmozyme (Lines 6-8, yellow, grey, and magenta) prior to run. Chemicals added during run included amiloride (inhibitor of sodium transport), forskolin/IBMX (activator of CFTR), genisten (CFTR potentiator), and inhibitor-172 (CFTR-specific inhibitor). X-axis is time (minutes), Y-axis is current (µA).

Ussing Data


Table 1. CFTR function following various treatments.
 F508del CFBEs were treated with vehicle or elexacaftor/tezacaftor (ET) followed by co-treatment with common pulmonary medications. CFTR function was then calculated using CFTR-dependent shortcircuit current (isc). Data displayed as mean \pm standard deviation and compared using one-tailed Student's ttest.

Results

- Co-treatment with azithromycin, tobramycin, pulmozyme, or hypertonic saline did not significantly alter modulator-rescued CFTR
- function (Table 1).
- Combination therapy with azithromycin and tobramycin also had no significant effect (Table

Conclusions

- Common pulmonary medications did not significantly alter rescued CFTR function in vitro. These findings suggest that these medications are unlikely to interfere with CFTR modulator therapy.
- Further studies utilizing clinical trial data and/or primary patient cell models would be useful to confirm these observations. Continuation of this work would help providers
- decide on continuing vs reducing co-treatments in patients taking CFTR modulators.

atment	CFTR-Dependent Isc	<u>p-value vs</u>
	<u>(µA/cm²)</u>	<u>ET only</u>
hicle	1.16 ± 0.73	2.24E-11
or/tezacaftor 5 μM each)	3.8 ± 1.56	N/A
ET + ycin (5 μM)	2.86 ± 2.00	0.057
T + cin (200 μM)	3.07 ± 0.99	0.068
ET + ycin (5 μM)/ cin (200 μM)	3.00 ± 0.60	0.063
T + Saline	3.88 ± 1.71	0.47
T + e (0.5 mg/mL)	3.71 ± 2.88	0.46

 ΔF508 CFBEs treated with CFTR modulators showed significantly increased CFTR function compared to vehicle-treated cells ([1.16 μ A \pm 0.73] vs. [3.80 μ A \pm 1.56] p < 0.05.