Alpha 1 Antitrypsin carriage and pediatric NAFLD: Is there a link?

Khan, Maya¹, Klepper, Corie M^{2,3}, Orkin, Sarah^{2,3}, Arce-Clachar, Ana^{2,3}; Bramlage, Kristin², Fei, Lin^{2,3}, Miethke, Alexander^{2,3}, Kohli, Rohit⁵, Xanthakos, Stavra A^{2,3}, Mouzaki, Marialena^{2,3}

Introduction

- Non-alcoholic fatty liver disease (NAFLD) has become the **most common** liver disease in children¹.
- Among adults with NAFLD, alpha-1 antitrypsin (A1AT) heterozygosity for the PiZ and PiS variants has been linked to an increased risk of advanced liver disease².
- Studies have linked **A1AT heterozygosity with hyperferritinemia**, in the context of NAFLD³.
- The **role** of the A1AT gene as a modifier of pediatric NAFLD is **not clear**.
- Objective: determine the **association** of Pi*Z and Pi*S heterozygosity with liver disease severity in pediatric NAFLD.

[NAS] ≥5 and/or a fibrosis stage ≥2) whilst controlling for age, sex and ethnicity.

Results

• The study cohort included **269 patients with biopsy-confirmed NAFLD**. • A1AT phenotyping had been done in n=260 of these patients, while A1AT levels were available from n=261.

Table 1. Baseline characteristics of the study patients.

Variable	Result
Age at first clinic visit, years	12 (±3)
Sex. n male (%)	186 (69%)
Ethnicity n non Hispanic (06)	211 (700%)
Ethnicity, if non-mispanic (%)	211 (7870)
At liver biopsy:	
Age, years	12 (±3)
BMI, kg/m ²	36(±7)
BMI z-score	2.5(±0.4)
ALT, U/L	118(±89)
AST, U/L	63(±43)
GGT, U/L	57(±44)
Alkaline phosphatase, U/L	206(±113)
A1AT level, mg/dl	123(±20)
Ferritin, ng/ml	78 (±88)

Data are reported as means (±SD) or as proportions

- Most patients (86%) had the MM A1AT phenotype, while 7% had the MS and 3% the MZ phenotype.
- Two patients had the SS phenotype and were included with the MS and MZ heterozygotes for the purposes of the analyses.
- The remaining patients had rarer variants, not associated with A1AT deficiency.
- **Carriers and non-carriers** of the risk variants (PiZ or PiS) had similar: • **age** (12±2 vs 12±3, p=0.54; respectively),
 - **sex distribution** (69% male in both groups, p=1.00)
- severity of obesity (BMI z score 2.5 vs 2.6, p=0.2)
- Proportion of **Hispanic** children was **lower among carriers** (7% vs 23%, p=0.05)

REFERENCES:

900.

- 1. Sahota, A.K., et al., 2020. Incidence of nonalcoholic fatty liver disease in children: 2009–2018. Pediatrics, 146(6).
- 2. Strnad, P., et al., 2019. Heterozygous carriage of the alpha1-antitrypsin Pi* Z variant increases the risk to develop liver cirrhosis. Gut, 68(6), pp.1099-1107.
- iron metabolism but not with liver damage. Hepatology, 44(4), pp.857-864. 4. American Thoracic Society/European Respiratory Society Statement. Standards for the Diagnosis and

3. Valenti, L., et al.., 2006. α1-Antitrypsin mutations in NAFLD: High prevalence and association with altered

Management of Individuals with Alpha-1 Antitrypsin Deficiency. Am J Respir Crit Care Med 2003;168:818-

Results

- Mean NAS 4.2 [±1.5] with 50% of patients having any fibrosis (stage 1-4) and 18% having ≥ stage 2 fibrosis.
- Differences in histology between groups are shown in Table 2.
- Mean **A1AT level** was 123 mg/dl [±20] and mean **ferritin** level was 78 ng/ml [±88], and they did **not correlate** with each other (r=-0.01; p=0.86) p=0.12, respectively) or by **no/mild vs. significant** fibrosis (123±20 vs
- A1AT levels did not differ by low vs. high (\geq 5) NAS (122±2 vs 126 ±19 mg/dl, 126±20 mg/dl, p=0.23, respectively).
- Multivariable modelling found no association between A1AT risk variants and **histologic severity** after controlling for confounders

Table 2. Histology data of the study patients.

Scores/staging Ove	Overall	A1AT	Non-
		Heterozygotes	heterozygotes
Steatosis	2.1(±0.8)	2.0(±0.9)	2.1 (±0.8)
Lob. inflammation	1.4(±0.7)	1.4(±0.7)	1.3(±0.7)
Ballooning	0.7(±0.6)	0.5(±0.5)	0.7(±0.6)
NAS	4.2 (±1.5)	3.8 (±1.5)	4.2 (±1.5)
N with NAS≥5 (%)	103/260 (40%)	9/29 (31%)	94/231 (41%)
Fibrosis stage			
N with F1-4 (%)	131/260 (50%)	11/29 (38%)	120/231 (52%)
N with F2-4 (%)	46/260 (18%)	4/29 (14%)	42/231 (18%)
Data are reported as means (±SD) or as proportions. P value for all >0.05			

Discussion and Conclusion

- In this large, single-center, pediatric **cohort** with histologically confirmed NAFLD, the prevalence of A1AT heterozygosity was comparable to what is described for the general population⁴.
- disease severity.
- A1AT levels were also not different between those with less vs. more advanced liver disease, **based on NAS and fibrosis severity** • Larger, multicenter studies, including children with more advanced fibrosis,
- are needed to investigate this further.

Funding support

Research Core Center in Cincinnati

• We found **no association** between **A1AT heterozygosity** and **histologic**

• NIH grant P30 DK078392 (Clinical Component) of the Digestive Diseases

CINCINNATI.